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We present a general decomposition theorem for elements of an ordered group 
with respect to a cone. This result enables us to obtain decompositions of 
finitely additive measures defined on quantum logics, orthoalgebras, or, more 
generally, on difference posets with values in Dedekind complete lattice ordered 
groups, with respect to a given cone of measures. In particular, we gain 
Yosida-Hewitt-type and Lebesgue-type decompositions. 

1. I N T R O D U C T I O N  

In the last decade, decompositions of  measures, like those of  Yosida 
and Hewitt (1952) type or Lebesgue type, have received the attention of 
many authors (Aarnes, 1970; D 'Andrea  et al., 1991; De Lucia and 
Dvure6enskij, 1993a,b; De Lucia and Morales, 1992; Dvure6enskij, 1991, 
n.d.; R/ittimann, 1990; Pap, n.d.) interested in finitely additive measures on 
noncommutat ive structures. These structures interest specialists working in 
mathematical  foundations of  the propositional system of  quantum mechan- 
ics. Such structures include, for example, quantum logics ( =  or thomodular  
posets) presented by Birkhoff and von Neumann,  orthoalgebras, originally 
introduced by Randall and Foulis (1979, 1981), and, more generally, 
D-posets ~ = difference posets), recently presented by K6pka  and Chovanec 
(1994). 

In the present paper, we give decompositions of  finitely additive 
measures on quantum logics, orthoalgebras, or D-posets, with values in a 
Dedekind complete lattice ordered group. The paper  is organized so that 
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first we give a general decomposition theorem for elements of an ordered 
group with respect to a given cone, and after introducing orthomod- 
ular posets, orthoalgebras, and D-posets, we apply the general decom- 
position theorem to finitely additive measures on the above-mentioned 
structures. 

The method generalizes many earlier results obtained in De Lucia and 
Dvure~enskij (1993a,b) and De Lucia and Morales (1992), and it can be 
applied to different kinds of measures appearing in noncommutative mea- 
sure theory as well as in fuzzy structures. 

2. D E C O M P O S I T I O N  T H E O R E M  

In the present section, we give a general decomposition theorem which 
will be applied to decompositions of finitely additive measures on quantum 
logics, orthoalgebras, D-posets, etc, 

Let (fr 0, + ,  <--~) be an ordered group, that is, (r is a commutative 
group written additively, with the neutral element 0, and partial ordering 
-< ~ such that if/* <- ~ v, then/* + ~ < ~ v + ~ for any ~ era. Let if+ denote 
the set of all positive elements of if, that is, (a+ = {/*era: 0 <e/*}. A cone 
of (9 is a subset r of f#+ such that (i) if/.1,/*2 ecr then/*~ + #2 ecr and (ii) 
0ecr The cone cr is v-closed if, for any bounded chain C in cr the join 
k/e  C : = V  e {/*:/*ecr exists in ff and is an element of ~. 

Let ~qr be a fixed subset of if+ containing a cone c~. We say that an 
element # cod is singular with respect to thecone cr if v <e/* for some v ecr 
implies v = 0. We denote by cr e (depending on ~r in general) the set of all 
elements of ~r which are singular with respect to cr 

Decomposition Theorem. Let (f#, 0, + ,  < ~) be a commutative ordered 
group. Let ~r be a subset of f#+ such that if r ~ 2 e d ,  ~1 ---~ r then 
~ 2 - ~  e~r and containing a v-closed cone cr Then for any/*e~r there 
exist two elements ~ ecr and r/ec~ *~ such that 

/*=~+~ (2.1) 

Proof. Define F ,  = {y ecr y -<~/*}. Since the zero element belongs to 
cr Fu is nonempty. Let Fo = {?i } be a chain of F~ with respect to < ~, and 
define ?o = V~ ?i. Due to our assumptions, Yo is an element of cr and 
Yo <-- ~/*, so that Yo is a majorant of Fo in F~. It follows from Zorn's lemma 
that F~ contains a maximal element r which belongs to cr and ~ -< ~/*. 

Put r/=/* - ~; clearly t / e d .  To finish the proof, we show that r/ecr * 
Let ? e f t  be such that ? < ~ t / = / * - ~ ,  so that ? + ~  <~/*. Because 
y + ~ ecr the maximality of ~ in F .  implies ? = O. �9 
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3. O R T H O M O D U L A R  POSETS 

An orthomodular poset (OMP) is a partially ordered set L with an 
ordering <,  the least and greatest elements 0 and 1, respectively, an 
orthocomplementation A_: L - ~ L  such that 

(OMi) a •177 = a  for any a~L. 
(OMii) a v a  •  for a n y a ~ L .  
(OMiii) I f  a -< b, then b • < a • 
(OMiv) If  a -< b • (and we write a .k b), then a v b~L. 
(OMv) If  a < b, then b = a v (a v b• -L (orthomodular  law). 

If  in an orthomodular poset 
of  mutually orthogonal elements 
poset (a complete orthomodular 

L the join of  any sequence (any system) 
exist, we say that L is a a-orthomodular 
poset). An orthomodular lattice is an 

orthomodular poset L such that, for any a, b~L, a v b exists in L (using 
the de Morgan laws, we see that a ^ b exists in L, too). A distributive 
orthomodular lattice is called a Boolean algebra. We recall that a lattice L 
is a Boolean algebra iff for any pair a, b eL there are three mutually 
orthogonal elements al, bl, csL such that a = a~ v c, b = b, v c. For  more 
details concerning orthomodular posets and lattices see, e.g., Kalmbach 
(1983) and Ptfik and Pulmannovfi (1991). / 

One of  the most important cases of  orthomodular lattices is the system 
of all closed subspaces L(H) of  a real or complex Hilbert space H, with an 
inner product ( �9 �9 ). Here the partial ordering -< is induced by the natural 
set-theoretic inclusion, and M • = {x ~H: (x, y) = 0 for any y ~M}. Then 
L(H) is a complete orthomodular lattice, which is not a Boolean algebra, 
if dim H ~ 1. This structure plays a crucial role in axiomatic foundations of 
quantum mechanics. 

If  S is an inner product space (not necessarily complete), denote by 
E(S) the set of  all splitting subspaces of S, i.e., the set of all M ~ S 
such that M + M •  S. Then E(S) is an orthomodular poset which is 
not necessarily a a-orthomodular  poset. We recall that according to 
Dvure~enskij (1988) S is complete if and only if E(S) is a a-orthomodular  
poser. 

4. ORTHOALGEBRAS 

An orthoalgebra is a set L with two particular elements 0, 1, and with 
partial binary operation 0 :  L x L - ~ L  such that for all a, b, csL we have: 

(OAi) If  a ObsL,  then b ~ a E L  and a @b = b O a  (commutativity). 
(OAii) If  b ~ c ~ L  and a@(b~c) sL ,  then a O b ~ L  and (a~b)~) 

c e L, and a ~ (b @ c) = (a 03 b) G c (associativity). 
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(OAiii) Fo r  any a e L  there is a unique b e L  such that  a (9 b is defined, 
and a (9 b = 1 (or thocomplementat ion) .  

(OAiv) I f  a (9 a is defined, then a = 0 (consistency). 

I f  the assumptions o f  (ii) are satisfied, we write a ~ b  @ c for the 

element (a (9 b) (9 c = a G (b (9 c) in L. 
Let a and b be two elements o f  an~orthoalgebra L. We say that  (i) a 

is orthogonal to b and write a _L b iff a (9 b is defined in L;  (ii) a is less than 

or equal to b and write a ~ b iff there exists an element c e L  such that  a / c 
and a ~ c  = b (in this case we a lso  write b - a); (iii) b is the orthocomple- 

ment  of  a iff b is a (unique) element o f  L such that  b _k a and a (9 b = 1 and 
it is written as a • 

I f  a < b, for the element c in (ii) with a �9 c = b we write c = b O a, 
and c is called the difference of  a in b. It  is evident that  

b e a  = (a ~ b •  • (4.1) 

Foulis et al. (1992) give proofs  o f  the following statements: 

Proposition 4.1. Let a, b, and c be elements o f  an or thoalgebra  L. 
Then 

(i) a t b  r  

(ii) a _L a =~ a = 0 .  
(iii) aA_ 1 , ~  a = 0 .  

(iv) a •177 = a. 
(v) 1 •  •  

(vi) a _k b =~ a .l_ ( a ~ b ) • 1 7 7  = b  • 

(vii) a _ L b  r a < b  • 
(viii) a < b =~ b = a (9 (a (9 b • z. 

(ix) a ~ b = a ~ c  ~ b = c .  

(x) a ~ b  < a ~ c  =~ b < c. 

(xi) 0 < a < 1, and < is a partial ordering on L. 
(xii) a < - b  =~ b •  z. 

(xiii) a ^ a  •  •  
(xiv) a l b, a v b ~ L  =~ a @ b = a  v b. 

(xv) a •  
(xvi) a < b  ~ b = a ( 9 ( b O a ) .  

(xvii) a = a (90. 
(xviii) a < b < c ~ (c O b )  ~ ( b  O a )  = c  G a .  

(xix) a < b  <_c r ( c O a )  G ( c O b ) = b @ a .  

We see that  if L is an o r thomodula r  poset  and a ~ b .'= a v b whenever 
a / b in L, then L with 0, 1, (9 is an orthoalgebra.  The converse statement 
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does not hold in general, as follows from an example due to R. Wright 
(Foulis et al., 1992): 

Example 4.2. Let L = {0, 1, a, b, c, e,f,  a • b • c • d • e •  • with 
a • b = d O e = c  • b ~ c = e ~ f = a ; ,  c ~ d = f ~ a = e  t ,  c O ) e = d  • 
a q)c =b  • e @ a  = f •  is an orthoalgebra that is not an orthomodular 
poset. 

We recall that an orthoalgebra L is an OMP iff a • b implies 
a v beL .  

5. D I F F E R E N C E  P O S E T S  

Recently K6pka and Chovanec (1994) introduced difference posets, 
(D-posets), which generalize both quantum logics and orthoalgebras, in- 
spired by an investigation of  the possibility to introduce fuzzy set ideas into 
quantum structures models (K6pka, 1992). In this model, the difference 
operation is a primary notion from which we derive other usual notions, 
such as the join of  mutually excluded events, which are important for 
probability calculus. 

A D-poset, or a difference poset, is a partially ordered set L with a 
partial ordering -<, maximal element 1, and with partial binary operation 
0 :  L x L ~ L ,  called a difference, such that, for a, b~L,  a O b  is defined if 
and only if a -< b, for which the following axioms hold for a, b, e~L: 

(DPi) b 0 a -< b. 
(DPii) b 0 (b 0 a) = b. 

(DPiii) a <b <-c ~ c e b  < c e a  and ( cOa)  O ( c O b )  = b O a .  

The following statements have been proved in K6pka and Chovanec 
(n.d.): 

Proposition 5. L Let a, b, c, d be elements of  a D-poset L. Then: 

(i) 1 0 1 is the minimal element of  L; denote it by O. 
( i i )  a 0 0 = a.  

(iii) a O a  = O. 

(iv) a < b  ~ b O a = O  r b = 0 .  
(v) a < b  =*. b O a = b  r a = 0 .  

(vi) a < b  <c => b O a < c O a a n d  ( cOa)  O ( b O a ) = c O b .  
(vii) b <-c,a <-cOb =~ b < c O a ,  and ( cOb)  O a = ( c O a ) O b .  

(viii) a < b < c =*. a < c O ( b O a )  and (c O(b Oa)) O a  = c Ob.  

Remark 5.2 (Navara and Pt~ik, n.d.). A poset L with minimal and 
maximal elements 0 and 1, respectively, and with a partial binary operation 
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0 :  L x L - ~ L  such that  for a, b, ceL we have 

(i) aOO=a 
(ii) i f a - < b < c ,  t h e n c O b < c O a a n d ( c O a )  O ( c O b ) = b O a  

is a D-poset .  
Fo r  any element a e L  we put  

a •  

Then  (i) a •177 = a, (ii) a < b; then b • < a • Two elements a and b o f  L are 
orthogonal, and we write a 3- b, iff a < b • (iff b < a•  

N o w  we introduce a binary opera t ion  ~ ) : L  x L ~ L  such that  an 
element c = a ~) b in L is defined iff a 3_ b, and for c we have b < c and 
a = c O b. The part ial  opera t ion  �9 is defined correctly because if there 
exists c~ e L  with b <- c~ and a = c~ O b ,  then, by (DPi)  and (DPii),  we have 

(1 O ( c  O b ) )  Ob = 1 O c  = (1 E)(c 1 0 b ) )  O b  = 1 O c t  

which implies c = c~. Moreover ,  

a ~ b  = ( a •  • = (b •  • (5.1) 

Indeed,  denote  by x = (a• • F r o m  (vii) o f  Proposi t ion 5.1, we con- 
clude that  x = (b • O a) • Therefore,  x •  a • O b, which means  a < x, 
analogously,  b -< x. Calculate 

x O a  = (1 O ( b  •  @ a  = 1 O b  • = b  

where we have used (viii) o f  Proposi t ion  5.1. 
The  opera t ion  ~) is commuta t ive  (this is evident) and associa- 

tive: suppose that  y = a ~ b  and z = (a 0 ) b ) @ c  exist in L. By (DPii)  
we have 

(z O a )  O ( z  O y )  = y  O a  

(z O a )  O c  = b 

z O a = b ~ c e L  

z = a ~ ( b ~ c ) e L  

so tha t  ( O A i ) - ( O A i i i )  are valid. 
I t  is evident tha t  any or thoa lgebra  L is a D-pose t  when a difference O 

is defined by (4.1). Indeed,  (DPi)  and  (DPii)  are trivially satisfied, and 
(DPiii)  follows f rom (xix) o f  Proposi t ion  4.1. 

By N a v a r a  and Pt~k (n.d.) we conclude that  a D-pose t  L with 0, 1, 
and ~ defined by (5.1) is an or thoa lgebra  if and only if a < 1 O a  implies 
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a = 0. Therefore,  it is not  hard  to give many  examples o f  D-posets  which 
are not  orthoalgebras.  2 

An  interesting model,  MV-algebras introduced by Mundici  (1986), 
gives an example o f  D-posets.  

Example 5.2. An MV-algebra is an algebra (M, @, Q,  ~ ,  0, 1), where 
0, 1 ~M, ~ and | are binary operations,  and ,k is a unary  operation,  such 
that, for all x, y, z ~M:  

(i) x ~ y  = y ~ x .  
(ii) (x ~ y )  @z  = x O ( Y  ~ z ) .  

(iii) x ~ 0 = x. 
(iv) x G l = l .  
(v) ( x * ) *  = x. 

(vi) 0 " =  1. 
(vii) x O x *  = 1. 

(viii) (x*@y)*Oy = (x Oy*)*@x. 
(ix) x Q y = ( x * G y * ) * .  

An  MV-algebra  M is a distributive lattice when x v y ,= (x (3 y*)  @ y  
and x A y ,=(X GY*) Q Y with 0 and 1 as minimal and maximal  elements 
(the partial ordering -< is defined in M via x -< y iff x v y = y). I f  for x < y 
we define y Ox ,=(x  ~y*)*,  then M with 1, G ,  -< is a D-poset.  

Example 5.3 (K6pka ,  1992). Let F = [0, 1] n, where f2 # 0. Elements o f  
F are called fuzzy sets o f  fL For  two fuzzy sets f and g o f  F we write f < g 
ifff(co) < g(co) for every ~o ~f2. Let ~:  [0, 1] -* [0, ~ )  be an injective increas- 
ing cont inuous  function such that  ~(0)  = 0. I f  we define for f -< g 

(g Gf ) ( co )  = @-'(qb(g((o)) -- ~(f((o))) ,  m ~f~  

then F with 1, 0 ,  -< is a D-poset .  
As a case o f  * we choose *( t )  = t, or  *( t )  = t 2, for  t~[O, 1]. 

6. LATTICE OR D ER ED  G R O U P S  

Let V with + ,  O, v ,  A, < be a nontrivial lattice ordered group, such 
that  if (V, + ,  O) is a nontrivial commutat ive  additive group with the neutral 
element O, (V, v ,  A, < )  is a lattice with respect to a partial ordering - ,  

2Such an example is the set of all effects of a Hilbert space H, g(H), i.e., of all Hermitian 
operators A on H with O < A </,  where O and I are the nonzero and identity Operators, 
respectively, on H, ~0hich are important for unsharp measurements of quantum mechanics. 
We recall that 8(H) is a D-poset (K6pka and Chovanec, 1994) but evidently not an 
orthoalgebra. 
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and group and lattice operations are related as follows: 

x < y  =~ x + z < y + z ,  Vz~V 

Then V is a distributive lattice for which minimal and maximal 
elements do not exist in V. For  example, any Riesz space is a lattice 
ordered group. We recall that one of the most important examples of 
lattice ordered groups for measure theory is the additive group of all real 
numbers with the natural ordering of real numbers. 

A lattice ordered group is said to be Dedekind complete if, for any 
nonvoid majorized subset B of  V, V B " = V  {b: beB} exists in V. If the 
former holds for any countable B, V is said to be a-Dedekind complete. 

A space V is Archimedean if, for some x, y s V with nx <- y for every 
integer n, we have x -< 0; we conclude that #(0) = 0. It is well known that 
if V is Dedekind complete, it is a-complete, and any a-complete space is 
Archimedean. For  more information on lattice ordered groups see, e.g., 
Birkhoff (1967). 

A nonempty set D of V is directed downward (upward), and we write 
D ~ ( D T )  if for any x, y e D  there exists z s D  such that z < x , z < - y  
(z >-x, z -  y). Two downward-directed sets {xt: t eT} and {y,: t eT} in- 
dexed by the same index set T are called equidirected if, for any s, t e T, 
there exists v ~ T such that x~ < x~ and x~ -< xt as well as y, -< Ys and y~ -< yr. 
A similar definition holds for upward-directed sets. 

L e t x e V a n d D c V .  W e s a y t h a t D T x i f D ~ a n d x = V D .  Dually 
we define D ~ x, i.e., D + and x = A D. If  {ft } and {gt } are equidirected, 
then 

{f~} i"f, {gt}Tg =~ { f t + g t } ' ~ f + g  (6.1) 

{ft} +f, {gt}~,g ~ { f t + g t } ~ , f + g  (6.2) 

Finally, for any x e V: x I = x v 0, x - = ( - x )  v 0, Ix] = x + + x - .  We 
have, for all x, yeL ,  (i) x = x + - x  - ,  (ii) I x ] = 0  iff x = 0 ,  (iii) 
Ix + y[ <--Ixl + ly]. By V+ we denote the set of  all positive elements of  V, 
i.e., V+ = {x ~ V: x >- 0}. 

7. MEASURES ON DIFFERENCE POSETS 

Throughout  the rest of  this paper, by L and V we mean a D-poset with 
1, <,  O,  for which the partial binary operation � 9  L x L ~ L is defined by 
(5.1), and a lattice ordered group with + ,  0, v ,  A, --<, respectively. Define 
the following natural ordering -<n on VL:/~1 -<,/~2 iff pl(a) < p2(a) for any 
a<-L. 
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We say that an element #~ V r is a finitely additive measure if 
/~(a @ b) = #(a) + #(b) whenever a @ b is defined in L. Then #(0) = 0, and 
#(a • = #(1) - # ( a ) ,  a~L. If  #: L ~ V+, then a < b implies #(a) </~(b). 

We recall that if /~ is a finitely additive measure on L, then 
#(b (~ a) = #(b) - #(a) whenever a < b. Conversely, an element # ~ V L is a 
finitely additive measure iff #(b O a ) =  # ( b ) -  #(a) whenever a < b; this 
follows easily from (5.t). 

To define a-additive and completely additive measures on L, we 
introduce the following notions. 

Let F = {al, �9 . . ,  an } --- L. Recursively we define for n > 3 

al • ' "  "Ga~ :=(a~ @ ' -  .@a~_ 1) ff3an (7.1) 

supposing that a~ @. �9 - @ an_ 1 and (al @" " "@ an_ 1) @ a, exist in L. From 
the associativity of  @ in D-posets we conclude that (7.1) is correct- 
ly defined. Definitionally we put a~@...@a,, =a~ if n = 1 and 
a~@...@a,, = 0  if n = 0 .  Then for any permutation ( 6 , . . - , i , )  of  
(1 . . . . .  n) and any k with 1 --- k -- n we have 

a~ @ . - -  @a,  =a i l  |  " "| ai,, (7.2) 

a ~ @ - - - @ a ,  = (a~ @. .  "@ak)~(ak+l@' ' '@a,)  (7.3) 

We say that a finite set F = {al . . . . .  a, } of  L is ( ~  -orthogonal if 
a~@.. .@a, exists in L. In this case we say that F has a (~-sum,  
(~7= 1 a;, defined via 

ai = al 0 " "  �9 an (7.4) 
i = 1  

It is clear that two elements a and b of L are orthogonal, i.e., a _L b, 
iff {a, b} is ( ~  -orthogonal. 

An arbitrary subset G of L is @ -orthogonal if every finite subset F of 
G is ( ~  -orthogonal. If  G is ( ~  -orthogonal, so is any of its subsets. An 
(~ -o r thogona l  subset G = {x~: ieI} of L has a (~-sum in L, written as 
(~)~t a~, if in L there exists the join 

(~) a,..= v (~ a~ (7.5) 
iEI F i 6 F  

where F runs over all finite subsets in L 
It is evident that if G = {a~ . . . . .  a,} is (~-or thogonal ,  then the 

t ~ - s u m s  defined by (7.4) and (7.5) coincide. 
We say that a D-poset L is a complete D-poset (a-D-poset) if, for any 

(~) -orthogonal subset (any countable (~) -orthogonal subset) G of  L, there 
exists the ( ~  -sum in L. It is straightforward to verify that a D-poser L is 
a o'-D-poset if, for any sequence {a~ } in L with a~ < a2 < �9 �9 �9 the join 
V~= i ai exists in L. 
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Introducing an order convergence, we are able to define a a-additive 
measure #: L ---} F. 

We say that a sequence {xn } in V is order convergent to an element 
x E F, and we write x,--* x, if there exist a downward-directed sequence 
{Pn} ~0 such that I x n - x  I <Pn for every n. If  x n ~ x  and xn--*y, then 
x = y, moreover, if xn T x (xn ~ x), then xn ~ x. 

An element # e V L is a a-additive measure if, for any ~ - o r t h o g o -  
nal sequence {an} with the ( ~ - s u m  a = ( ~ = l a n  in L, we have 
Y',7= l #(ai) --* #(a). We recall that an element # E VL+ is a a-additive measure 
iff #(b O a) = #(b) - #(a) whenever a < b, and for any sequence {an } with 
al < a2 < ' " ,  and a = ~/~= 1 an existing in L, we have #(a) = V~= 1 #(an). 

A mapping # ~ VL+ is said to be a positive completely additive measure 
on L if, for any (~-or thogonal  system {ai: i~1}, for which the ( ~ - s u m  
(~;~1 ae exists in L, we have for any finite subset F o f / ,  

#( i~1 ai) -- i~FP(ai) <- b F (7.6) 

where {bE} ~ 0 and bvl <--bF2 whenever F2~_F1. Due to (6.2), (7.6) is 
defined correctly, and we shall write #((~i~la t )  = ~gEl#(a~). 

If the index set I in (7.6) is only countable, we say that # is a positive 
a-additive measure, and we write #( (~p= 1 ai) = ~ =  1 #(ai). It is clear that 
this notion coincides with the above-defined one for positive measures. 

Since any Dedekind complete lattice ordered group is Archimedean, 
we conclude that # ( 0 ) =  0. Indeed, for any finite subset F of I with 
I#((~i~,ag)--~EF#(ai)l<--bF, where a ; = 0  for any iEI, we have 
(card F - 1) I#(0)1 -< b~ ~ 0, so that #(0) = 0. 

Moreover, any completely additive measure is a-additive, and any 
a-additive measure is finitely additive. 

We denote by a(L, V)+, aa(L, V)+, and ca(L, V)+ the sets of all 
positive finitely additive, a-additive, and completely additive measures, 
respectively, from VL+. 

It is not hard to prove that a positive additive measure # on L is 
a-additive, or completely additive, iff 

o r  

{i~1 #(ai)} T #(/=(~1 ai) (7.7) 

where F runs over all finite subsets of I whenever ~ = l  ai or (~;~za;, 
respectively, exists in L. 
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8. DECOMPOSI TIO NS OF MEASURES 

In the present section, we give the main results of the paper. If  we 
define c~ as the set of  all finitely additive measures from a D-poset L into 
a lattice ordered group V, f# becomes an ordered group when <~ ..= < - - n  

and (#1 + #2) (a) .'= #l (a) + #2(a), a eL.  Using the Decomposition Theorem, 
we are ready to prove many decomposition theorems for positive finitely 
additive measures on D-posets, in particular, Yosida-Hewitt- type and 
Lebesgue-type decompositions. 

Theorem 8.1. Let L be a D-poset and V a Dedekind complete lattice 
group. Let c~ be a v-closed cone of a(L, V)+. Then for any #~a(L, V)+ 
there exist two elements ~ ~cg.  such that 

~ = ~ + ~  (8.1) 

Proof. This follows from the Decomposition Theorem upon setting 
�9 

Theorem 8.2. Every positive finitely additive measure # from a D- 
poset L into a Dedekind complete lattice ordered group V can be expressed 
as a sum # = ~ + r/, where r is a positive completely additive measure from 
V L, and r/is a finitely additive measure such that if ~ ~-~n q, (~ea(L, V)+. 
then ( = 0. 

Proof Define the set ~g = ca(L, V)+. We show that cg is a v-closed 
cone. 

First, let {7i} be a chain in a(L, V)+ with a bound 7~a(L, V)+ with 
respect to the natural ordering < n, and define 

go(e) = V 7,(c), e e L  (8.2) 
i 

Since 0 < 7i (e) < 7i (1) < 7(1), the Dedekind completeness of  V implies that 
g0(e) is defined correctly on L. Moreover, go is finitely additive. Indeed, let 
a~)b be defined in L. Then {7;(a)} and {7,(b)} are equidirected, and 
7i(a) t go(a), 7,(b) 1" g0(b). By (6.1) we conclude that 

go (a @ b) = 7, (a @ b) t = (7, (a) + 7, (b)) 1" = 7, (a) 1" + 7, (b) T = 70 (a) + 70 (b) 

Therefore, 

70 = V 71 (8.3) 
i 

where ~/~ is taken in fr and conversely, if 7'0 = ~/~ 7,, then 7; = 70- 
Now we claim to show that 7oeca(L, V)+ if {7,} is a bounded chain 

in cg. Let a = @i~i a, exist in L. Then, for any finite subsets F of /, 
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we have 

0 < ~,o(a) - ~ 7o(ai) 
i~F  

= 7 o ( a O ( 2 a ~ ) )  

= (~o(a  0 (  2 a~))--),~(aO( 2 a i ) ) )+Y~(a~(  2 a~)) 

~Pi + b~ 

where {Pi} .L 0 and {b~}~- .[ O, and F is a finite subset of  I. Then 

0<-7o(a) - V ~ vo(a~) <- pi ,~ o 
F i~F  

so that vo(a) = ~ 1  vo(a~)ecg, which means that cg is a v-closed cone. 
Now we can apply Theorem 8.1 to obtain the assertion in ques- 

tion. �9 

Theorem 8.3. Every positive finitely additive measure p on a D-poset 
L with values in a Dedekind complete lattice ordered group V can be 
expressed as a sum/~ = ~ + r/, where ~aa(L, V)+ and tleaa(L, V)~+. 

Proof. The proof  is identical to the proof  of  Theorem 8.2, if we use 
the cone cr = aa(L, V)+. [] 

Theorem 8.4. Every positive a-additive measure # on a D-poset L with 
values in a Dedekind complete lattice ordered group V can be expressed as 
a sum/~ = ~ + t/, where ~ eta(L, V)+ and t/is a positive a-additive measure 
such that if ~ -<-n t/, r V)+, then ~ = 0. 

Proof. This follows from Theorem 8.1 and the Decomposition Theo- 
rem if we put cr = ca(L, V)+ and ar = aa(L, V)+. �9 

Remark 8.5. Theorems 8.2 and 8.3 have been proved in De Lucia and 
Dvure6enskij (1993a) and De Lucia and Morales (1992). They are analogs 
of  the classical Yosida and Hewitt (1952) decomposition as well as Theo- 
rem 8.4. In De Lucia and Morales (1992) the component r / f rom decompo- 
sition Theorems 8.2 and 8.3 is said to be a weakly purely additive measure 
and a purely additive measure, and t/ in Theorem 8.5 is called a purely 
a-additive measure. 

Let ~ be a nonvoid subset of  a D-poset L. A positive finitely additive 
measure #ea(L, V)+ is said to be ~-regular if 
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#(a) = V {#(b): b < a, be#], aeL (8.4) 

We denote by a~,(L, V)+ the set of  all #- regular  elements from a(L, V)+. 

Theorem 8.6. Let ~ be a nonempty set of  a D-poset L such that if 
a, b e ~ ,  then a v b exists in L and belongs to ~'. Then every element 
#ea(L, V)+ can be expressed as a sum # = ~ +~/, where ~ is a ~-regular  
positive finitely additive measure and r /ea~(L,  V)*+. 

Proof We claim to show that the set c~ = a~,(L, V)+ is a v-closed 
cone. It is clear that 0ecg. L e t / ~ , / t 2 e ~ ,  and let a be a given element of  L. 
Define bF:=V{b:beF}, where F is any finite subset of  the set 
{ b e ~ :  b -< a}. Then {#~(bF)}F $ #i(a), i = 1,2, and { ~ I ( h F ) } F  and 
{#/(bF)}F are equidirected upward. Using (6.1), we have 

(#, + #2)(a) = # , ( a ) +  #2(a )=  #(br)  t +#2(bF) t =(# ,  + #2)(bv) 1" 

SO that #1 +/z2 ecg. 
The v -closedness of cg can be proved as follows: let Vo be defined by 

(8.2), where {Vi} is a bounded chain in cg. Then, for any aeL and b e ~  
with b < a, we have 

;,o(a) = V = V V ;,,(b) = V V ;,,(b) = V ;,o(b) 
i i b b i b 

which entails that ~o ecg. 
The rest follows from Theorem 8.1. �9 

9. L E B E S G U E  D E C O M P O S I T I O N S  

Below we present two Lebesgue-type decompositions which generalize 
those in De Lucia and Dvure6enskij (1993a) and De Lucia and Morales 
(1992). 

Let W be another lattice ordered group, and let pea(L, V)+, 
2ea(L, V)+ be given. We say that (i) # is 2-continuous, and we write 
/~ ~ ,  2, if for every E > 0, E e V+, there is 6 > 0, 6 e W+ such that every 
aeL with 2(a) < 6 implies #(a) < E; (ii)/~ is dominated by 2, and we write 
# ~ 2, if 2(a) = 0 implies #(a) = 0; (iii) # is singular, and we write/~ • 2, if 
there exists aeL such that #(a • = 0 and 2 ( a ) =  0; (iv) # is 2-singular if, 
whenever yea(L, V)+, ~ ~E,~, and y -<,2, then y =0 .  

Theorem 9.1. Let V have the property that for any u > 0, u e V there 
exist Ul,UzeV, u~,u2>O, with Ul+Uz=U. Let #ea(L,V)+ and 2 e  
a(L, W)+. Then # can be expressed in the form # = ~  +~/, where 
~, ~lea(L, V)+, ~ ~,~, and ~/is 2-singular. 
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Proof Let us define cg = {?ca(L, V)+: ? ~ ,  2}. Then cg is a v-closed 
cone of a(L, V)+. Indeed, 0scg, and let V~, V2scg, E~V+. There are two 
el, e2 > 0 with c = q + E2. We can find 6~ > 0 and 62 > 0 in W such that 
2(a~) <61 implies ? ( a ~ ) < q  and 2(a2)<62 implies ?(a2)<Ez. Put 6 = 
~1 ^ 62 and let 2(a) < 6. Then ~l(a) + 7z(a) < el + ~2 = E. 

Now let {V~} be bounded chain in c#, and define ?o via (8.2). Given ?~o 
we find 6 > 0 in W such that 

?(a) = ?(a) 

where {Pi} ,[ O, because {?(a) 
~(a) < E. 

2(a) < 6 implies ?io(a) < e. Then 

- Vio(a) + 7io(a) <P,o + E 

-?/o(a)}~ [ 0 uniformly in a~L, Therefore, 

To obtain the desired decomposition, we apply Theorem 8.1. �9 

Theorem 9.2. For any pair of finitely additive measures #, 2 ca(L, V)+ 
there exist two elements ~ and 7/in a(L, V)+ such that 

# = r  +r/,  r  (9.1) 

and r / ^  2 = 0. 

Proof The set cg~={r  is a v-closed cone in 
a(L, V)+. Applying Theorem 8.1, we obtain the decomposition (9.1), 
where q ~cgff. 

Suppose now that ~c is an element of a(L, V)+ such that x < ,  q and 
x -<,, 2. Then rc ~r and from the basic property of the set cgff we conclude 
t h a t x = 0 ,  i.e., 0 = r /  ^2 .  �9 

10. CONCLUDING REMARKS 

It is worth noting that in some particular cases, ~ can consist only of 
the zero function, and in this case, the decomposition (2.1) is trivial, since 
<f* = a(L, V)+. On the other hand, one can find other important cones. 
For example, such a situation occurs when L = E(S) is the set of all 
splitting subspaces for any incomplete inner product space S, and V = R, 
because, by Dvure~enskij (1993b), S is complete iff ca(E(S), R)+ ~ {0}. 
However, in this case, the set of all ~-regular finitely additive measures, 
where ~ is the set of all finite-dimensional subspaces of S, is very rich 
(DvUre6enskij, 1991, 1993b). 

It is well known t h a t  the space of all bounded, finitely additive, 
real-valued measures on a Boolean algebra is a lattice ordered group (in 
fact, a Riesz space). For quantum logics, orthoalgebras, or D-posets, this 
statement is not true, in general, as the following assertion says: 

Proposition 10.1. Let H be a finite-dimensional Hilbert space of di- 
mension at least three. Then the set of all bounded finitely additive 
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measures on L(H) is not a lattice with respect to the natural ordering. In 
particular,/~ A r/ exists as a bounded finitely additive measure on L(H) if 
and only if either # <n q or r/ < ,  #. 

Proof. Due to Gleason's theorem (Dvuretenskij, 1993a) there exists a 
one-to-one correspondence b&ween the set of all bounded, real-valued, 
finitely additive measures {#} on L(H) and the set of  all Hermitian 
operators {T} on H determined via 

/t(M) = tr(TPM), M~E(S) (10.1) 

where PM denotes the orthoprojector from H onto M. 
Let #r ,  #s, and/~u be measures determined by Hermitian operators T, 

S, and U on H via (10.1). It is easy to verify that #r <--nlAU iff T< U 
[T < U means (Tf, f )  <- (Uf, f )  for any f e l l ] ,  so that # r  ^ #s = #u exists iff 
T ^ S = U. According to Kadison's result (Luxemburg and Zaanen, 1971, 
58.4), T ^ S exists as a Hermitian Operator on H iff T and S are compara- 
ble; consequently, # r  A #s exists iff /~r and /~s are comparable, i.e., 

#r <n#S or /1 s < n # r ) .  �9 

From the former assertion it follows that it is not possible to use all 
the methods that work in lattice ordered groups; in particular, we did not 
prove the uniqueness of  decomposition for measures on quantum logic, 
orthoalgebras, or D-posets. On the other hand, Aarnes (1970) and 
Dvuretenskij (1991, 1993b) proved decomposition theorem together with 
uniqueness for L(H) and E(S) using the deep Gleason theorem. 

We recall that it is also possible to study measures on difference posets 
with values in lattice ordered semigroups V. However, posing natural 
conditions to V such as V is cancelative, i.e., x + y = z + y, then x = z, and 
V is naturally ordered, i.e., if x < y, then x + z = y for some z ~ V, we 
obtain, by Birkhoff (1967), that V is a positive cone of  an ordered group, 
which means that we obtain all results of  the present paper. 

To finish this section, we note that the general Decomposition Theo- 
rem enables us to derive another decomposition of  measures which are 
defined not only on quantum logics, orthoalgebras, or D-posets. Such 
possible structures include, for example, measures on fuzzy quantum 
structures (Dvuretenskij and Rietan, 1991) and generalized measures 
(Klement and Weber, 1991). 
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